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Upstream boundary-layer separation in stratified flow 
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Stratified, inviscid channel flow over a thin barrier or into an abrupt contraction 
is considered on the hypotheses that the upstream dynamic pressure and density 
gradient are constant (Long’s model) for those parametric regimes in which the 
hypotheses are tenable for finite-amplitude disturbances, namely k < 2 for the 
barrier and k < 1 for the contraction, where k = NH/lrU is an inverse Froude 
number based on the Vaistiki frequency N ,  the channel height H ,  and the up- 
stream velocity U. Reverse flow in the neighbourhood of the forward stagnation 
point, which implies the formation of an upstream separation bubble, is found for 
certain critical ranges of k. The maximum barrier height for which the dominant 
lee-wave mode can exist without reversed flow either upstream or downstream 
of the barrier is 0.34H. The limiting case of a half space is considered briefly, 
and forward separation is found for K = Nh/U > K,, where K, = 2.05 for a thin 
barrier and 1.8 for a semi-circular barrier. The corresponding values for reverse 
flow in the lee-wave field are K, = 1.73 and 1.3, respectively. 

1. Introduction 
The phenomenon of upstream blocking in stratified flow, as observed by Long 

(1955) and Debler (1959), involves the formation of a stagnation zone (or zones) 
upstream of a barrier or contraction in a channel flow. Long’s observations of 
flow over barriers suggest that blocking may be triggered by local flow reversals 
and density inversions, with the consequent formation of turbulent eddies, in 
the lee-wave field. Debler’s observations of flow into a line sink (which may be 
regarded as the limiting case of a contraction) suggest that blocking is initiated 
by boundary-layer separation at the forward stagnation point. Maxworthy’s 
(1970) more detailed observations of rotating flow past a sphere show that an 
upstream separation bubble definitely forms for a sufficiently large value of, 
and grows with, the inverse Rossby number (the analogue of the inverse Froude 
number, k below), although its ultimate length and shape appear to be controlled 
by viscous effects. It is, of course, possible that the formation of turbulent eddies 
in the downstream flow and forward separation are not independent, but it 
nevertheless appears worthwhile to show that an inviscid model does predict 
forward separation and to obtain explicit results for some simple configurations. 
[Miles (1968, 1971) develops theoretical criteria for both lee-wave instability 

t Also Department of Aerospace and Mechanical Engineering Sciences. 



792 J .  W .  Miles 

and stagnation-point separation in rotating flow past a sphere and finds that the 
two critical Rossby numbers are roughly equal; however, this equality appears 
to be essentially coincidental, and it seems unlikely that the critical conditions 
for the two separate phenomena are simply related.] 

We consider here stratified flow over a thin barrier or into a contraction on the 
basis of Long’s (1953) model, in which the dynamic pressure and the vertical 
gradient of the density are constant (at a sufficiently large distance) upstream of 
the discontinuity. Let H be the height of the channel, h the height of either the 
thin barrier or the step in the bottom of the channel (see figure l), U ( y )  the speed 
of the undisturbed flow, and N ( y )  the intrinsic (Vaisala) frequency in the un- 
disturbed flow. Choosing Him as a characteristic length, we construct the charac- 
teristic parameters 

d = nh/H ~ ( l - c ) ,  (1.1) 

k = NHimU, and K = kd = N h / U ,  (1.2a, b) 

where c is the contraction ratio and k is, by hypothesis, independent of y, the 
dimensionless elevation above the bottom of the channel. The hypothesis of 
no upstream injuence implicit in Long’s model holds for the barrier if k < 2 and 
for the contraction if k < 1. Disturbances of order K~ appear upstream of the 
barrier if k > 2 in consequence of second-order interactions among the internal 
waves (McIntyre 1971). Disturbances of order K appear upstream of the contrac- 
tion if k > 1 in consequence of the source-like effect of the step (Wong & Kao 
1970).? 

We follow a previous analysis (Miles 1968a) of the lee-wave problem for a thin 
barrier and refer to sections and equations therein by the prefix I. Proceeding as 
in I, we express the Cartesian components of the particle velocity in terms of the 
dimensionless displacement of a streamline, 6(x, y )  : 

The resulting boundary-value problem then is described by the Helmholtz 
equation, 

the boundary conditions (on the hypothesis of unseparated flow) 

v2s+ k2S = 0, (1.4) 

Yo) = YO’ n) = 0, (1.5a, b) 

w, y) = Y (0 < y < 4, ( 1 . 5 ~ )  

and the requirements that no waves appear in the upstream flow (x -+ - co) and 
that the singularity at  x = 0 and y = d be physically acceptable (see discussion in 
I). The lower boundary for tc =+ 0 is specified by either 

or 

(1.6a) 

(1.6b) 

where H ( x )  is Heaviside’s step function. 

hypothesis of no upstream influence for k > 1. 
t Jones (1970) gives a solution for an expansion (c < 0) in which he invokes the 
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2. Thin barrier 

has the form (I, $3) 
The solution of this boundary-value problem for the thin barrier (figure 1 (a ) )  

where a, = ln2-k214 (K  < k < K +  l),  (2.2) 
K is the integral part of k, and the G, are the Fourier coefficients of the equivalent- 
vortex-sheet distribution, 

d Y )  = 9{~,(o->Y)-6,(o+,Y)) ( 2 . 3 ~ )  

(2.3b) 

wherein S,(O T , y) E &?/ax at z = 0 T . The dimensionless particle velocity (in 
the positive direction of flow) on the barrier is given by 

a3 

= I; G, sin ny, 
1 

( 2 . 4 ~ )  

(2.4b) 

The G, are determined by the requirement that S(0, y) be continuous in d < y < 7~ 
and are given either by the variational approximation of I, $ 4  or by the per- 
turbation solution of I, $ 5.  

Proceeding on the basis of the latter solution, we obtain 

q(y) = ~ o ( ~ ) E l + 2 ~ ~ , ( l - ~ l + s , ( l - ~ ) ~ ) - l ( a + c 0 s y ) + 0 ( ~ 2 ) ]  (0 < k < 1) ( 2 . 5 ~ )  

= qo(y) [l + 2 4  1 - a)-2 (a + cosy) + 2a(a + 2) E2{ 1 - E2 + E2(  1 - 43-1 
x(2a+a2+4acosy+cos2y)+0(~3) ]  ( 1 <  k < 2), (2.571) 
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where q,(y) = (I  - cos y)3 (cosy - cos dl-8 

is the solution for potential flow (k = 0) over the barrier, 

(2.6) 

a = sin2 Qd, (2.7) 

and en = 1 - (1 - (k/n)z)-t. (2.8) 

Letting y J, 0, we obtain 

q; = *a-ql+2a(l+a)€l(1-€l+€l(1-a)2}-~+O(€2)] (0 < k < 1) (2.9a) 

- - +,-!t[ 1 + 2a( 1 + a!t)-2 + 2a(a + 2) (1 + 6a - 4a* + a2) e2{ 1 - e2 + c2( 1 - a)3" 

+O(e3)] (1 < k < 2 ) .  ( 2 . 9 b )  

The ratio of this stagnation-point velocity gradient to its value in potential flow, 
Q csc i d ,  is plotted in figure 2. Reversed flow, accompanied by an upstream separa- 
tion bubble, is implied by 4; < 0 and occurs for k,(d) < k < n+ 1 (n = 0 , l ) ;  k, 
and k, are plotted in figure 3 ; t  K~ and K, are plotted in figure 4. We remark that 
k, and k, are monotonically decreasing functions of d ;  on the other hand, K~ is 
a monotonically increasing function of d, whilst K, appears to oscillate about the 
asymptote 1.82 (I.,- 1.82) < 0-01 for h/H > 0.36). 

n " 
0 1 -0 

k 
2.0 

FIGURE 2. The ratio of the (upstream) stagnation-point velocity gradient, as given by 
(2.9), to the corresponding limit for potential flow. The dashed portions of the curves are 
in the parametric domain of lee-wave instability (see figure 3). 

Stagnation points (1 - Sv = S, = 0) appear in the lee-wave field for 1 < k < kc 
and are embedded in regions of local density inversion and reversed flow that 
appear to imply at least local instability of the lee waves (Long 1955). The locus 
k = k,, at which stagnation points appear on the upper boundary, is plotted in 

t The notation in $ 2  of the present paper differs from that of I in the definition of k,. 
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figure 3 (this locus is determined by I (3.13a), which is based on the lee-wave 
field alone and neglects the effects of the trapped modes). It intersects k = k, at 
k = 1.66 and h = 0*34H, thereby determining the maximum barrier height for 
which the dominant lee-wave mode can exist without closed streamlines some- 
where in the flow. 

0.455 

0 1 
k 

2 

FIGURE 3. The parametric domains for the thin barrier. Flow without either lee waves or 
dosed streamlines is possible for 0 < k < k,. Flow with the dominant lee-wave mode and 
without closed Streamlines is possible for k, < k < k,. Upstream separation occurs in the 
( - ) domains, Lee-wave instability occurs in the ( + ) domains. 

Both upstream separation and downstream instability would appear to occur 
if both k, < k < 2 and 1 < k < kc [the ( If: ) domain in figure 31, but also may occur 
if either k, < k < 2 or 1 < k < kc, since either upstream separation or the existence 
of closed streamlines in the dowstream flow implies the failure of the hypothesis 
that all streamlines originate in a uniform flow at x = - 03 (e.g. instability of the 
downstream flow could alter the upstream flow and initiate upstream separation 
in k < k,). The structure of the solution implies that the parametric domains 
for the existence of the higher (n 2 2) lee-wave modes without closed streamlines 
shr ink rapidly with increasing n (e.g. the results of I imply lee-wave instability 
for h/H > 0.18 at k = 2.5); however, the hypothesis of no upstream influence 
holds only to first order (in K )  for k > 2, whereas the formation of closed stream- 
lines is a finite-amplitude effect. 

3. Contraction 

the representations 
Turning now to the contraction, we impose the a priori restriction k < 1, pose 

4&,y) -+ ZAA,sinny (zf0, 0 < y < n) ( 3 . l a )  

+ xB,sinnz ( ~ $ 0 ,  0 < x < n), ( 3 . l b )  

00 

1 
a, 

1 
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where z = T(Y-d) / (T-d)  3 (y-d) /c ,  (3.2) 

and develop the solution of (1.4) and (1.5a, b)  in the form 

m 

1 
S(x, y) = C, a;lA,exp (a,%) sinny (x < 0) (3.3a) 

m 

1 
= So(y)-CP;lBnexp(-Pnx)sinnz (x > O ) ,  (3.3b) 

where a, is given by (2.2), 

Pn = [(n/c>' - k'I3, (3.4) 

and So(y) = dsin{k(rr-y)}/sin(k(rr-d)} ( 3 . 5 4  

= d sin {kc(n - z)}/sin (kcn). (3.5b) 

[We note that y - So(y) -+ z as k $0, corresponding to a uniform flow, but that the 
flow as x -+ co is not uniform for k > 0.1 

Requiring S(0, y) to  be continuous in d < y < rr and invoking ( 1 . 5 ~ )  in 
0 < y < d, we obtain 

m m 

1 1 
Ca;lA,sinny = So(y) -;I:B,P;lsinnz (d < y < T )  ( 3 . 6 ~ )  

= y (0 < y < d) .  (3.6b) 

It then remains to determine the A ,  and B, from (3.6) and the identity between 
(3 . la ,  b )  in d < y < rr, 

oo m 

1 1 
I;A,sinny = C,Bnsinnx (d < y < T ) .  (3.7) 

Multiplying (3.7) through by (2/n) sinmz and integrating from x = 0 to z = 7 ~ ,  

we obtain 
m 

1 
B m = C I m n A ,  (m= 1 7 2 7 . . . , ~ ) 7  (3.8) 

where Imn = (2/n) sinmzsinnydx 1: (3.9a) 

= (Zm/n) (m2 -n2c2)-1sinnd. (3.9b) 

Substituting (3.8) into ( 3 . 6 ~ ) ~  multiplying (3.6a7 b )  through by (Z/n) sinmy, and 
integrating from y = 0 to y = rr, we obtain the infinite set of simultaneous equa- 
tions 

m o o  

a L I A m + ~ C ,  ;I: pil&m&nAn = Dm (m = 1,2 ,  ...,a), (3.10) 
z=l n = l  

where 

= (2/7r) [(m-2 + Ed(m2 - k2)-1 cot k(rr - d) )  sinmd 

(3.11 a)  

+ k2 dm-'(m' - k 2 ) - 1 : ~ ~ ~  ma.  (3.11 b)  
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A first approximation to the solution of (3.10) is given by (higher approxima- 

A:) = a, D,. (3.12) 

We test this approximation by calculating p(y) in the limit of potential flow, 
I C J  0. Invoking this limit in (3.11) and (3.12) and substituting the result for A t )  
into (3.la), we obtain 

(3.13 a)  

= (nc)-llog{sin&(d+y)/sin+ld-yl} (3.13b) 

--t (zc)-l tan (arc) y (y $0). (3.13~) 

tions may be obtained by integration) 

Q) 

@(y) = (21~)  2 (nc)-lsin nd sinny (k = 0) 
1 

The exact result for potential flow is given by (Milne-Thomson 1960, 9 10.7) 

+y = tan-lq-ctan-lcq (0 < y < d )  (3.14~) 

+. (1-C2)P (Y-10). (3.14b) 

Comparing p; = (m)-ltan(&rc>, as given by (3.13c), with the exact result 
qi = +(l -c2)--1, as given by (3.14b), we find that the error is less than 4.5% 
for c < 4 and that the limiting ratio of the two results as c t 1 is 8/n2. The com- 
parison near y = d, where (3.13b) yields a logarithmic singularity in contrast 
to the Id- yl-* singularity implied by (3.14a), is, of course, less favourable, but 
this is of no great import for the present investigation. 

FI~TJRE 4. The separation parameters K~ and K~ for the barrier and K~ for the contraction. 
K is the integral part of k; K = kd. 

Substituting (3.12) into (3.1 a) ,  differentiating with respect to y, and setting 

= C na, D,. (3.15) 
y = 0, we obtain 00 

1 
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This series is formally divergent (in consequence of the non-uniform convergence 
of the Fourier series for q(y) as y & 0) but may be transformed to a convergent 
(like l/n2) series by separating out the asymptotic approximations to the sum- 
mands in the series for q(y)  as n/k -+ 00 and summing these terms prior to dif- 
ferentiation with respect to y. Carrying out this procedure, we obtain 

x [{kdcotk(n-d)- (a,/n))sinnd+ (k2d/n)cosnd]. (3.16) 

The variation of q: with k in 0 < k < k, is qualitatively similar to that for the 
thin barrier (figure 2). The parameter k,, defined as in $2, such that qi = 0 at 
k = k,, is plotted in figure 5. The parameter K, = k,d, which is a monotonically 
increasing function of d, is plotted in figure 4. 

1 

0.152 

0.661 

0.6 
0 1 

h/H = I - c  

FIGTJRE 5. The separation parameter k, for the contraction compared with 
that for the barrier. Forward separation occurs for k, < k < 1. 

4. Barrier in half-space 
The solution of (1.4) and (1.5a, c) for a thin barrier in a half-space (I, $ 6) yields 

the velocity gradient at the forward stagnation point (z = 0 - , y = 0) in the 
form 

q; = - (azspgaq) (6 = 0, 7 = -in), (4.1) 

where 5 and q are the elliptic co-ordinates of I (6.1), referred to the barrier height, 
h, as the unit of length, and a(<, 7) is given as an expansion in Mathieu functions 
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by the sum of I (6.5) and I (6.7). Substituting these results into (4.1), we obtain 
(after some reduction) 

m 

n=O 
d = (n/s)+ K c ( - 1" (A2n+d2 W " + l ( g ,  2n+1lfe., 2n+l) 

where the Mathieu-function parameters on the right-hand side of (4.2) are 
defhed and tabulated, as functions of s = K ~ ,  in the National Bureau of Standards 
(1951) tables. Using these tables, we find that the smallest zero of the right-hand 
side of (4.2) is K, = 2.05. [An independent calculation, based on the variational 
approximation of I, $4 yields K~ = 2.02.1 This compares with K, = 1.73 (see I) 
for the fist appearance of reversed flow downstream of the barrier. We also 
note that the maximum values of the stagnation-point reversal parameter for the 
barrier in a channel ($2) are K~ = 2-08 (hlH1.1) and K~ = 1-83 (h/H = 0.42). 

The solution of (1.4) and (1.5a, c )  for a semi-circular barrier in a half-space 
(Miles 1968b, hereinafter referred to as 11) yields 

qi = 1 + (aV/ar 88) (r  = 1, 8 = n), (4.3) 

where r and 8 are polar co-ordinates, referred to the barrier height, h = a, as the 
unit of length, and yo = sin 8 in (1.5 a). Retaining only the first two of the lee- 
wave modes in I1 (3.2), we obtain 

where b = 8/(3n), and Jl,2 and q,2 are Bessel functions of argument K. The 
smallest zero of the right-hand side of (4.4) is K, = 1-8. This compares with K~ = 1.3 
(11, appendix) for the first appearance of reversed flow downstream of the 
barrier. 

This work was partially supported by the National Science Foundation, under 
Grant GA-10324, and by the Office of Naval Research, under Contract Nonr- 
00014-69-A-0200-6005. I am indebted to Dr C. J. R. Garrett for stimulating 
discussions. 
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